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Abstract
We present the world-line quantization of a system invariant under the
symmetries of reciprocal relativity (pseudo-unitary transformations on ‘phase-
space coordinates’ (xµ(τ ), pµ(τ)) which preserve the Minkowski metric
and the symplectic form, and global shifts in these coordinates, together
with coordinate-dependent transformations of an additional compact phase
coordinate, θ(τ )). The action is that of free motion over the corresponding
Weyl–Heisenberg group. Imposition of the first class constraint, the generator
of local time reparametrizations, on physical states enforces identification of
the world-line cosmological constant with a fixed value of the quadratic Casimir
of the quaplectic symmetry group Q(D − 1, 1) ∼= U(D − 1, 1) � H(D), the
semi-direct product of the pseudo-unitary group with the Weyl–Heisenberg
group (the central extension of the global translation group, with central
extension associated with the phase variable θ(τ )). The spacetime spectrum of
physical states is identified. Even though for an appropriate range of values the
restriction enforced by the cosmological constant projects out negative norm
states from the physical gauge invariant spectrum, leaving over spin zero states
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only, in this purely bosonic setting the mass-squared spectrum is continuous
over the entire real line and thus includes a tachyonic branch as well.

PACS numbers: 11.10.Ef, 02.20.Qs, 03.65.Pm, 04.20.Fy

1. Introduction

Born reciprocity [1] is based on the observation of the apparent exchangeability of ‘position’
and ‘momentum’ in much of the formalism of classical and quantum physics, and seeks to
elevate this equivalence to a fundamental principle. The idea of Born [1, 2] and Green [3, 4]
was to formalize this by extending the Minkowski metric of Einstein’s special relativity to an
invariant metric on ‘phase-space coordinates’

d�2 = ds2 +
c4

b2
dm2 = dxµ dxµ +

c2

b2
dpµ dpµ, (1)

where

xµ = (ct, �x), pµ =
(

E

c
, �p

)
,

ηµν = diag(− + + · · · +), µ = 0, 1, 2, . . . ,D − 1,

(2)

which can be seen as introducing a new fundamental constant, here a maximal universal unit of
force b > 0 (which can also be thought of in terms of fundamental constants of acceleration, or
length, or time, depending on the interpretation). Born and Green sought reciprocally invariant
‘master’ equations whose zeros were interpreted via multi-mass relativistic wave equations
for the meson spectrum. The idea of reciprocity has found resonance with various attempts
to generalize the framework for the fundamental interactions—for example, in the context of
string and M-theory [5, 6], in the guise of bi-crossproduct algebras and physics at the Planck
scale [7], in ‘two-time’ formulations [8], or in ad hoc ‘noncommutative geometry’ extensions
of perturbative field theory [9].

Born–Green reciprocity can be viewed [10–13] as an alternative paradigm for generalized
wave equations, which specify unitary irreducible representations of the full symmetry group,
in the same way that relativistic wave equations establish unitary irreducible representations of
the Poincaré group in four dimensions. It can be argued [10–13] that the appropriate invariance
group is the so-called quaplectic group Q(3, 1) ∼= U(3, 1) � H(4), or more generally in D
spacetime dimensions, the group Q(D −1, 1) ∼= U(D −1, 1)�H(D) of reciprocal relativity,
the semi-direct product of the pseudo-unitary group of linear transformations between xµ and
pµ which preserve both the extended metric d�2 and the symplectic form, with the Weyl–
Heisenberg group. The Wigner–Mackey method of induced representations can be applied for
this case, and b → ∞ contraction limits of the appropriate generalized reciprocally invariant
wave equations should collapse to the standard relativistic wave equations of particle physics,
as, for example, solutions of the massive Klein–Gordon equation can be seen as going over to
the Galilean invariant nonrelativistic wavefunctions in the c → ∞ limit [14].

In this paper, we study the alternative route to particle equations of motion via Hamiltonian
quantization of constrained systems on the world-line [15]. We present the world-line
quantization of a system invariant under the symmetries of Born–Green reciprocity, realized as
transformations on ‘phase-space coordinates’ (xµ(τ ), pµ(τ)) on the world-line, for an action,
considered in section 2, which is that of free motion on the associated Weyl–Heisenberg
group, a guarantee from the outset for full quaplectic invariance. These transformations are



World-line quantization of a reciprocally invariant system 12097

global Lorentz variations, xµ → xµ + ωµ
νx

ν, pµ → pµ + ωµ
νp

ν (in infinitesimal form,
with ωµν = −ωνµ), global quaplectic ‘boosts’, xµ → xµ + αµ

νp
ν/b, pµ → pµ − bαµ

νx
ν

(in infinitesimal form, with αµν = ανµ), comprising the pseudo-unitary group U(D − 1, 1),
together with global translations in both variables xµ and pµ. The action contains terms
quadratic in velocities, and also linearly coupled terms, in such a way that both the extended
metric d�2/dτ 2, and the symplectic form pµ(τ) dxµ(τ)/dτ − xµ(τ) dpµ(τ)/dτ , are evident.
The latter occurs in a term which plays the role of a minimal Landau-type coupling in
the kinetic energy of a further scalar variable θ(τ ), interpreted as a phase (S1) degree of
freedom associated with the unit operator of the Weyl–Heisenberg algebra. In this way global
translations in xµ and pµ, which do not leave the symplectic form invariant, are compensated
by appropriate x- and p-dependent transformations of the phase θ , so that translation invariance
is restored overall. The full algebra of Noether charges thus comprises all of the conserved
charges which generate these transformations. These include the generator, Pµ, of spacetime
translations in xµ to be interpreted as the conserved energy–momentum of the system, as well
as the generator, L

µν

T , of spacetime Lorentz transformations in xµ and pµ, to be interpreted
as the total relativistic angular-momentum of the system. Both these quantities generate
the Poincaré invariance of the system, of which the representation realized by the space of
quantum states determines the mass and spin content of the quantized dynamics. Whether at
the classical or quantum level the conserved charges for translations in xµ and pµ,Pµ and
Xµ, do not commute, but their algebra possesses a central extension given by the conserved
generator �θ of translations in the phase θ(τ ). In any of the superselection sectors with a
fixed nonvanishing discrete eigenvalue of this generator (given the compactness of the θ part
of configuration space), Pµ and Xµ thus fulfil a Heisenberg algebra, and can be identified
with the physical energy–momentum and possibly even the spacetime position, respectively.
The remaining Noether charges are the sum of quadratic combinations of these charges, plus
quadratic combinations of non-conserved auxiliary Heisenberg algebra generators, Xµ and Pµ,
which commute with Pµ and Xµ. The full symmetry algebra is thus the semi-direct product
of the conserved Heisenberg algebra, and the homogeneous charges, which indeed together
generate the Lie algebra of the quaplectic group, Q(D −1, 1) ∼= U(D −1, 1)�H(D). These
considerations are detailed in section 3.

In section 4, the model is extended to include local time reparametrizations. The
associated Noether symmetry, the generator of local world-line gauge transformations,
is the extended Hamiltonian and becomes a first class constraint. Following the Dirac
quantization procedure, imposition of the first class constraint on physical states enforces
the condition that the cosmological constant term, allowed by the reparametrization invariant
coupling of the system to the world-line metric, must be identified with a discrete fixed
eigenvalue of the quadratic Casimir invariant of the quaplectic algebra, in line with well-
understood features of Hamiltonian quantization [16]. The decomposition of such irreducible
representations of the full quaplectic group with respect to the physical Poincaré group
IO(D−1, 1) ∼= O(D−1, 1)�T (D) is discussed, where the generators Pµ are identified with
the standard energy–momentum operators, the generators of spacetime translations. From this
analysis follows the spectrum of physical states classified according to the eigenspectrum of
the Lorentz covariant mass-squared and generalized Pauli–Lubanski operators. A noteworthy
result is that an appropriate choice of cosmological constant projects out any negative norm
state from the physical spectrum. Nevertheless in the present formulation of such reciprocally
invariant dynamics involving bosonic degrees of freedom only the mass spectrum is continuous
and always contains spacelike, namely tachyonic states. Conclusions and possible extensions
of this work are addressed in section 5, while an appendix briefly outlines the rationale behind
the choice of action used in the next section.
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2. Dynamics and symmetries

2.1. The action

For reasons discussed in the appendix, the degrees of freedom of the system to be
considered are the spacetime and conjugate coordinates, xµ(τ) and pµ(τ), as well as an
angular variable, θ(τ ), taking its values in the periodic range 0 � θ � 2π . Spacetime
indices µ, ν = 0, 1, 2, . . . ,D − 1 are raised and lowered using the Minkowski metric
ηµν = diag(− + + · · · +). The inner product defined by that metric is denoted with a dot,
namely, x · p = xµpµ.

The dynamics of the configuration space variables (xµ(τ ), pµ(τ), θ(τ )) is taken to follow
from the action principle:

S[xµ, pµ, θ ] =
∫

dτL, L = 1

2N0
[ẋ2 + κ0ṗ

2] +
1

2N0

ακ0

λ0
[θ̇ − λ0(ẋ · p − x · ṗ)]2. (3)

In this expression, N0 > 0, κ0 = c2/b2 � 0, and α and λ0, with αλ0 > 0, are normalization
factors specifying the physical properties of the system. Their dimension is such that the
action S has the dimension of h̄, namely M · L2 · T −1. Since we shall not work in ‘natural’
units but take the time evolution variable τ to be dimensionless, the physical dimensions of
these parameters are as follows:

[N0] = M−1 · T , [κ0] = M−2 · T 2, [λ0] = M−1 · L−2 · T , [α] = M · T −1.

(4)

As explained in the appendix, this choice of action follows from considering free motion
on the Weyl–Heisenberg group associated with the variables (xµ, pµ). The rationale behind
such a choice is that, on the one hand, it readily guarantees from the outset a dynamics which
is invariant under the full quaplectic group, and on the other hand, it generalizes within this
context the situation for the ordinary relativistic particle which corresponds to motion on the
group of spacetime translations coupled to a world-line metric in a reparametrization invariant
manner. Thus a relativistic particle dynamics invariant under the reciprocal symmetry of the
quaplectic group may likewise be constructed by coupling the above action to a world-line
metric in a reparametrization invariant manner, as done in section 4. In the present section, the
symmetries of the above action are described and its dynamics understood in the next section.
The system coupled to a world-line metric may then readily be solved based on the general
considerations of [16].

By construction, the action (3) possesses a series of global symmetries generated by the
corresponding Noether charges. First one has invariance under translations in the spacetime
coordinates xµ,

xµ(τ) → xµ(τ) + aµ, pµ(τ) → pµ(τ), θ(τ ) → θ(τ ) − λ0a
µpµ(τ), (5)

of which the Noether charges are denoted by Pµ, since they measure the conserved total
energy–momentum of the system and indeed possess the appropriate physical dimension.
Next one has a dual symmetry, namely invariance under translations in the dual configuration
space coordinates pµ,

xµ(τ) → xµ(τ), pµ(τ) → pµ(τ) + kµ, θ(τ ) → θ(τ ) + λ0k
µxµ(τ), (6)

of which the Noether charges are denoted by Xµ, having indeed the same physical dimensions
as the spacetime coordinates xµ. The charges Xµ and Pµ are the generators of the Heisenberg
subgroup H(D) of the full quaplectic symmetry Q(D − 1, 1) ∼= U(D − 1, 1) � H(D).
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In infinitesimal form, the Lorentz symmetry

xµ(τ) → �µ
νx

ν(τ ), pµ(τ) → �µ
νp

ν(τ ),

θ(τ ) → θ(τ ), ηρσ �ρ
µ�σ

ν = ηµν,
(7)

reduces to the transformations

xµ(τ) → xµ(τ) + ωµ
νx

ν(τ ), pµ(τ) → pµ(τ) + ωµ
νp

ν(τ ),

θ(τ ) → θ(τ ), ωνµ = −ωµν,
(8)

with the total relativistic angular-momentum L
µν

T = −L
νµ

T as the conserved Noether
charge. Likewise the dual symmetry corresponds to the symplectic transformations which
in infinitesimal form read

xµ(τ) → xµ(τ) +
√

κ0α
µ

νp
ν(τ ), pµ(τ) → pµ(τ) − 1√

κ0
αµ

νx
ν(τ ),

θ(τ ) → θ(τ ), ανµ = αµν,

(9)

and possess conserved Noether charges denoted by Mµν with Mνµ = Mµν . The charges L
µν

T

and Mµν are the generators of the pseudo-unitary subgroup U(D − 1, 1) of the full quaplectic
symmetry Q(D − 1, 1) ∼= U(D − 1, 1) � H(D).

Finally, invariance under translations in the angular variable θ(τ ),

xµ(τ) → xµ(τ), pµ(τ) → pµ(τ), θ(τ ) → θ(τ ) + θ0, (10)

possess a Noether charge denoted by Qθ .
Rather than giving here the expressions, whether within the Lagrangian or Hamiltonian

formalisms, for all these quantities and their equations of motion, it turns out to be particularly
useful to introduce a complex parametrization for the dynamics in which the pairs of variables
(xµ, pµ) for each spacetime index µ = 0, 1, 2, . . . ,D−1 are combined into a single complex-
valued quantity. This choice of representation of the dynamics is also perfectly adapted to its
inherent quaplectic symmetry properties.

2.2. The complex parametrization

By introducing the complex parametrization of configuration space in its spacetime sector

zµ = 1√
2
[xµ + i

√
κ0p

µ], (11)

the action (3) reads (a bar on top of a quantity denotes of course its complex conjugate)

S[zµ, zµ, θ ] =
∫

dτL, L = 1

N0
ż · ż +

1

2N0

ακ0

λ0

[
θ̇ + i

λ0√
κ0

(ż · z − z · ż)

]2

. (12)

The previously discussed global symmetries in infinitesimal form are then expressed as

zµ(τ ) → zµ(τ ) + �µ
νz

ν(τ ) + Aµ, θ(τ ) → θ(τ ) + θ0 − i
λ0√
κ0

[z(τ ) · A − z(τ ) · A],

(13)

with the correspondences

�µν = ωµν − iαµν, �µν = −�νµ, Aµ = 1√
2
[aµ + i

√
κ0k

µ]. (14)

In this form, it is clear that the global symmetry group of the system, namely the so-called
quaplectic group [10–12], is indeed isomorphic to Q(D − 1, 1) ∼= U(D − 1, 1) � H(D). The
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associated Noether charges are to be denoted by, respectively for the symmetry parameters
Aµ,�µν and θ0,

Qµ, Qµν = −Q
νµ

, Qθ, (15)

with the following correspondences with the previous notations,

Qµ = 1√
2

[
Pµ − i√

κ0
Xµ

]
, Qµν = 1

2
L

µν

T +
1

2
iMµν. (16)

3. Hamiltonian formulation and canonical quantization

3.1. The Noether algebra

Within the Hamiltonian formulation of the dynamics, momenta canonically conjugate to the
configuration variables xµ, pµ, zµ and θ are denoted, respectively, by �

µ
x ,�

µ
p,�µ and �θ ,

with their canonical equal time Poisson brackets. Henceforth we shall already consider the
canonically quantized system, in which these variables are operators of which the commutation
relations are given by the result of the corresponding Poisson brackets multiplied by ih̄ (we
shall refrain from introducing a notation distinguishing between operators and their classical
counterparts, but the difference should be clear from the context and be kept in mind). Hence
the quantized dynamics is realized as a representation of the following general tensor product
of Heisenberg algebras:[
xµ,�ν

x

] = ih̄ηµν,
[
pµ,�ν

p

] = ih̄ηµν, [zµ,�ν] = ih̄ηµν, [θ,�θ ] = ih̄.

(17)

The correspondence between the quantities �
µ
x ,�

µ
p and �µ is such that

�µ = 1√
2

[
�µ

x − i√
κ0

�µ
p

]
. (18)

Note also that as operators, a quantity with a bar on top stands for the adjoint of that operator,
namely, zµ = zµ†, with respect to the implicit inner product on the space of quantum states
for which the basic operators xµ, pµ, θ and their conjugate momenta �

µ
x ,�

µ
p and �θ are

Hermitian and self-adjoint.
The identification of the previously discussed Noether charges in terms of these quantities

is readily achieved, leading to the expressions,

Qµ = �µ − i
λ0�θ√

κ0
zµ, Qµν = zµ�ν − zν�

µ
, Qθ = �θ. (19)

Separating the real and imaginary parts of Qµ and Qµν , one also finds

Pµ = �µ
x − λ0�θp

µ, Xµ = �µ
p + λ0�θx

µ, (20)

L
µν

T = xµ�ν
x − xν�µ

x + pµ�ν
p − pν�µ

p, (21)

Mµν = √
κ0

[
pµ�ν

x + pν�µ
x

] − 1√
κ0

[
xµ�ν

p + xν�µ
p

]
. (22)

In view of these expressions, let us also introduce the dual combinations

Qµ = �µ + i
λ0�θ√

κ0
zµ = 1√

2

[
Pµ − i√

κ0
Xµ

]
, (23)
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with thus

Pµ = �µ
x + λ0�θp

µ, Xµ = �µ
p − λ0�θx

µ. (24)

Note that in terms of these variables one may write

Qµν = 1
2 [zµQν − zνQ

µ
] + 1

2 [zµQν − zνQ
µ

], (25)

as well as

L
µν

T = L
µν

orbital + [pµXν − pνXµ], L
µν

orbital = xµPν − xνPµ, (26)

Mµν = 1

2

√
κ0[pµPν + pµPν] − 1

2
√

κ0
[xµX ν + xµXν] + (µ ↔ ν). (27)

The above expression for the total angular-momentum in which the orbital angular-momentum
contribution L

µν

orbital is isolated, clearly shows that whereas the degrees of freedom xµ = (ct, �x)

may be interpreted as describing the position of the reciprocal particle in Minkowski spacetime,
the dual variables pµ = (E/c, �p) play in fact the rôle of internal degrees of freedom which
may carry some internal spin structure when properly excited. This separation in the rôles
played by the two types of variables (Xµ,Pµ), namely Qµ on the one hand, and (Xµ, Pµ),
namely Qµ on the other hand, is to be exploited further later on. Incidentally, one may also
write, provided however λ0�θ �= 0,

Qµν = −i
√

κ0

2λ0�θ

[Q
µ
Qν − Q

µ
Qν], (28)

or in real form,

L
µν

T = 1

2λ0�θ

[(XµPν − X νPµ) − (XµPν − XνPµ)], (29)

Mµν = − 1

2λ0�θ

1√
κ0

[(XµX ν + κ0PµPν) − (XµXν + κ0P
µPν)], (30)

results which once again display the dual rôles played by the two sectors Qµ and Qµ which,
together with (θ,�θ), provide an alternative parametrization of the phase space of the system,
namely through the change of variables

(
xµ,�

µ
x ;pµ,�

µ
p; θ,�θ

) ↔ (Qµ; Qµ; θ,�θ).
All these considerations having been made explicit, the evaluation of the algebra

of commutation relations for all Noether charges is straightforward. The nonvanishing
commutators are found to be

[Qµ,Q
ν
] = 2h̄

λ0�θ√
κ0

ηµν, (31)

[Qµν,Qρ] = ih̄ηµρQν, [Qµν,Q
ρ
] = −ih̄ηνρQ

µ
, (32)

[Qµν,Qρσ ] = ih̄[ηµσQρν − ηνρQµσ ]. (33)

Furthermore the operators Qµ and Q
µ

commute with both Qµ and Q
µ

, while one also has

[Qµ, Q
ν
] = −2h̄

λ0�θ√
κ0

ηµν. (34)

Written in their real form, these commutation relations also correspond to the algebra of
Noether charges,

[Xµ,Pν] = 2ih̄λ0�θη
µν, [Xµ, Pν] = −2ih̄λ0�θη

µν, (35)



12102 J Govaerts et al[
L

µν

T ,X ρ
] = ih̄[ηµρX ν − ηνρXµ],

[
L

µν

T ,Pρ
] = ih̄[ηµρPν − ηνρPµ], (36)

[Mµν,X ρ] = ih̄
√

κ0[ηµρPν + ηνρPµ], [Mµν,Pρ] = −ih̄
1√
κ0

[ηµρX ν + ηνρXµ], (37)

[
L

µν

T , L
ρσ

T

] = ih̄
[
ηµρLνσ

T − ηµσL
νρ

T − ηνρL
µσ

T + ηνσL
µρ

T

]
, (38)[

L
µν

T ,Mρσ
] = ih̄[ηµρMνσ + ηµσMνρ − ηνρMµσ − ηνσMµρ], (39)

[Mµν,Mρσ ] = ih̄
[
ηµρLνσ

T + ηµσL
νρ

T + ηνρL
µσ

T + ηνσL
µρ

T

]
. (40)

Note that the U(D − 1, 1) algebra generated by Qµν possesses the linear Casimir

C1 = −iQµ
µ = 1

2
Mµ

µ = √
κ0p · �x − 1√

κ0
x · �p, C1 = C1. (41)

One has

[C1,Q
µ] = h̄Qµ, [C1,Q

µ
] = −h̄Q

µ
, [C1,Q

µν] = 0, (42)

or in real form,

[C1,Xµ] = ih̄
√

κ0Pµ, [C1,Pµ] = −i
h̄√
κ0

Xµ,[
C1, L

µν

T

] = 0, [C1,M
µν] = 0.

(43)

Another global symmetry of the dynamics has yet to be addressed, namely its invariance
under constant translations in the time evolution parameter τ , τ → τ + τ0, of which the
conserved Noether charge is the canonical Hamiltonian H. A straightforward evaluation of
this quantity finds the following identification:

H = 1

2
N0

[
Q · Q + Q · Q +

λ0

ακ0
�2

θ

]
. (44)

Since the sectors Qµ and Qµ commute with one another, this form of the Hamiltonian makes
it explicit that indeed the Noether charges Qµ are conserved. That the Noether charges
Qµν = zµ�ν − zν�

µ
are conserved readily follows from a simple direct calculation. In other

words, the commutators of all Noether charges with the Hamiltonian do indeed vanish.
As a matter of fact, there exists an alternative representation of the Hamiltonian operator

involving the U(D − 1, 1) linear Casimir C1. Expressing Qµ in terms of Qµ, one finds

H = 1

2
N0

[
Q · Q + Q · Q + 4

λ0�θ√
κ0

C1 +
λ0

ακ0
�2

θ

]
. (45)

One also has

Q · Q + Q · Q = P2 +
1

κ0
X 2, Q · Q + Q · Q = P2 +

1

κ0
X2. (46)

Incidentally, these results imply that the quadratic Casimir operator of the quaplectic algebra
Q(D − 1, 1) ∼= U(D − 1, 1) � H(D) is given by

C2 = Q · Q + Q · Q, (47)

with the following relation to the linear U(D − 1, 1) Casimir C1,

C2 = Q · Q + Q · Q + 4
λ0�θ√

κ0
C1 = P2 +

1

κ0
X 2 + 4

λ0�θ√
κ0

C1. (48)

It is worth noting that the combinations of variables
(
xµ,�

µ
x , pµ,�

µ
p

)
to form the

quantities (Xµ,Pµ, Xµ, Pµ), and finally (Qµ, Qµ), with in particular the Hamiltonian solely
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expressed in terms of Qµ while the sectors Qµ and Qµ are commuting with each defining
a Heisenberg algebra, is very much reminiscent of the ordinary Landau problem. What
corresponds to the Euclidean plane coordinates (x, y) and the magnetic field in the latter case
are now, respectively, the pairs of variables (xµ, pµ) for each of the spacetime components
µ = 0, 1, 2, . . . ,D − 1, and the conserved Noether charge Qθ = �θ , except for an
overall minus multiplying the contribution of the time component sector µ = 0 to the total
Hamiltonian. Indeed, �θ is conserved and commutes with all operators contributing to the
quantum dynamics. This remark allows one to consider now the diagonalization problem of
both the Hamiltonian H and the total energy–momentum Pµ of the system.

3.2. Quantum spectrum: the generic situation �θ �= 0

Since �θ is conserved and commutes with all other operators (except θ of course), it is
most convenient to consider the diagonalization problem in each of the superselection sectors
defined by each of the discrete �θ eigenstates |n〉,

�θ |n〉 = h̄(n + λ)|n〉, n ∈ Z, λ ∈ [0, 1[, (49)

where λ (defined modulo 1) parametrizes a U(1) holonomy and the freedom in the choice of
representation for the Heisenberg algebra [θ,�θ ] = ih̄ associated with the compact degree of
freedom 0 � θ � 2π [17]. In order to exploit the noted analogy with the ordinary Landau
problem, let us consider any given superselection sector associated with such a nonvanishing
eigenvalue, �θ = h̄(n + λ) �= 0. This is guaranteed for all n ∈ Z provided λ �= 0, or else if
λ = 0 when n �= 0. The particular situation when �θ = 0 is to be considered separately in
section 3.3.

The �θ superselection sector having been specified in this manner, for what concerns the
remaining variables

(
xµ,�

µ
x ;pµ,�

µ
p

)
let us introduce the Fock algebra generators

aµ
+ =

√
|λ0�θ |
2h̄

√
κ0

[
zµ + i

√
κ0

|λ0�θ |�
µ

]
, aµ

+
† =

√
|λ0�θ |
2h̄

√
κ0

[
zµ − i

√
κ0

|λ0�θ |�
µ

]
, (50)

a
µ
− =

√
|λ0�θ |
2h̄

√
κ0

[
zµ + i

√
κ0

|λ0�θ |�
µ

]
, a

µ
−
† =

√
|λ0�θ |
2h̄

√
κ0

[
zµ − i

√
κ0

|λ0�θ |�
µ

]
. (51)

These operators define two commuting sets of Fock algebras, for each of the spacetime
components µ, ν = 0, 1, 2, . . . ,D − 1,[

aµ
s , aν

s ′
†] = δs,s ′ηµν, s, s ′ = +,−. (52)

As a function of the sign of the product λ0�θ, η = sign (λ0�θ), we then have

If η = +1: Qµ =
√

2h̄|λ0�θ |√
κ0

(−iaµ
+

)
, Qµ =

√
2h̄|λ0�θ |√

κ0

(
iaµ

−
†); (53)

If η = −1: Qµ =
√

2h̄|λ0�θ |√
κ0

(
iaµ

−
†)

, Qµ =
√

2h̄|λ0�θ |√
κ0

(−iaµ
+

)
, (54)

so that,

�µ = 1

2
(Qµ + Qµ) = i

√
h̄|λ0�θ |

2
√

κ0

[
a

µ
−
† − aµ

+

]
, (55)
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and

Xµ = η

√
h̄|λ0�θ |√κ0

[
aµ

η
† + aµ

η

]
, Pµ = i

√
h̄|λ0�θ |√

κ0

[
aµ

η
† − aµ

η

]
, (56)

while the total angular-momentum reduces to

L
µν

T = 1

2λ0�θ

[XµPν − X νPµ] − ih̄
[
a

µ
−η

†
aν

−η − aν
−η

†
a

µ
−η

]
. (57)

Finally the Hamiltonian is diagonalized in the form

H = 2h̄N0
|λ0�θ |√

κ0
a
†
−η · a−η +

1

2
N0

λ0

ακ0
�2

θ + h̄N0
|λ0�θ |√

κ0
D. (58)

Note that the expression (57) shows that the generalized Pauli–Lubanski operator

Wµ1µ2···µD−3 = 1

2
εµ1µ2···µD−3µνρPµL

νρ

T ,

Sµνρ = (−1)D−3

(D − 3)!
εµνρµ1µ2···µD−3Wµ1µ2···µD−3 ,

(59)

which characterizes the internal spin representation of quantum states, receives contributions
only from the degrees of freedom

(
a

µ
−η, a

µ
−η

†). The latter are thus to be interpreted as the
internal degrees of freedom of the system, while (Xµ,Pµ) are the spacetime ones commuting
with the internal ones, and defining their own Heisenberg algebra, [Xµ,Pν] = 2ih̄λ0�θη

µν �=
0. This interpretation is also consistent with the fact that only the internal degrees of freedom
contribute to the spectrum of the Hamiltonian generator of time evolution in τ .

A complete diagonalization, namely the identification of a complete basis of quantum
states is thus achieved. Given any of the �θ eigenstates with �θ �= 0, one takes its tensor
product with any of the Pµ eigenstates, |Pµ〉, as well as with any of the Fock states associated
with the Fock algebra generated by a

µ
−η and a

µ
−η

†. In the latter sector a priori one may have
two choices to be contemplated, each with its drawbacks. For the first choice all operators a

µ
−η

are considered as annihilation operators of the normalized Fock vacuum, with all operators
a

µ
−η

† thus being creation operators. In such a situation, the Fock vacuum is Lorentz invariant
under the action of L

µν

T , and manifest Lorentz covariance of all quantum states is ensured
throughout. However, because of the negative definite signature of the time component of the
Minkowski metric, η00 = −1, any state involving an odd power of the creation operator a

µ=0
−η

†

is of negative norm. The appearance of such negative norm states is generic in any Lorentz
covariant quantum system with internal degrees of freedom. Nevertheless, the total number
operator contribution to the Hamiltonian, N = a

†
−η · a−η, remains then positive definite, with

a degeneracy at each level equal to the number of D-partitions of N over the natural numbers,
which corresponds to the dimension of the totally N-symmetric representation of SU(D). As
an alternative choice avoiding the appearance of these negative norm states, one may wish
to use rather a

µ=0
−η

† and a
µ=i
−η with i = 1, 2, . . . , D − 1 as annihilation operators of the Fock

vacuum. However such a choice would break Lorentz invariance of the Fock vacuum of
the quantized system, a most unwelcome feature. It would also imply an unbounded below
spectrum for the quantum Hamiltonian H.

Consequently the choice to be made is the first one which is manifestly Lorentz covariant.
It is to be hoped that in a manner similar to what happens in string theory for instance, once
the symmetry under translations in the time evolution parameter τ is gauged by coupling the
dynamics to a world-line metric in a diffeomorphic invariant manner, the resulting first class
constraint is such that these negative norm states are projected out from the physical spectrum,
namely that the physical spectrum is restricted to lie within the lowest level N = 0 of the



World-line quantization of a reciprocally invariant system 12105

Hamiltonian spectrum. Nonetheless, the fact that the generators of all Poincaré symmetries,
namely Pµ and L

µν

T , commute with the Hamiltonian implies that such a physical spectrum
still transforms covariantly under the full Lorentz group, resulting in a consistent physical
interpretation of the system independent of the choice of world-line parametrization.

Given the Lorentz covariant choice of Fock states, it follows that the spectrum of the
Hamiltonian is organized into discrete levels quite analogous to the Landau levels of the
ordinary Landau problem. Each of these excitation levels distinguished by the eigenvalue of
the number operator N carries a two-fold degeneracy, one which is finite and corresponds to the
D-partitions of N into the natural numbers, and the other which is infinite non-countable and
parametrized by the real eigenvalue spectrum of energy–momentum values Pµ. At any such
level N = 0, 1, 2, . . . , the corresponding states are organized into irreducible representations
of the full D-dimensional Poincaré group, labeled by the representation of the generalized
Pauli–Lubanski tensor (59) generated by the operators

(
a

µ
−η, a

µ
−η

†), as well as the Lorentz
invariant measuring the mass-squared value of the states, (Mc)2 = −P2. Note that the latter
may take its value anywhere in the continuous spectrum defined by the entire real line. Thus
for instance even for the lowest states with N = 0 which are all of vanishing internal spin and
of strictly positive norm, one obtains a continuous mass spectrum with a tachyonic branch for
spacelike energy–momenta eigenvalues Pµ.

3.3. Quantum spectrum: the particular case �θ = 0

In the �θ superselection sector with a vanishing eigenvalue �θ = 0, most quantities simplify
drastically,

Qµ = Qµ = �µ, Pµ = Pµ = �µ
x , Xµ = Xµ = �µ

p, (60)

so that

[Xµ,Pν] = 0, (61)

as well as

H = 1

2
N0

[
P2 +

1

κ0
X 2

]
, (62)

with then

L
µν

T = xµ�ν
x − xν�µ

x + pµ�ν
p − xν�µ

p = xµPν − xνPµ + pµX ν − pνXµ

= L
µν

orbital + pµX ν − pνXµ. (63)

In this case the sector
(
pµ,�

µ
p

)
plays the rôle of internal degrees of freedom, with

(
xµ,�

µ
x

)
that of the spacetime ones. Diagonalization is best achieved in the conjugate momentum
basis of

(
�

µ
x ,�

µ
p

) = (Pµ,Xµ) eigenstates. In that case no negative norm states arise in
Hilbert space, but the Hamiltonian spectrum is no longer bounded below, since both P2 and
X 2 may take arbitrarily negative eigenvalues, albeit all in a manifestly Lorentz covariant
manner. Note that any of the energy–momentum eigenstates of fixed Pµ is infinitely non-
countably degenerate in the spectrum of Xµ for a fixed value of X 2 (when �θ �= 0, this infinite
degeneracy for a fixed Pµ remains discrete). The internal spin representations are those of
tensors of all orders characterized by the operator (pµX ν − pνXµ) with (pµ,Xµ) spanning
the Heisenberg algebra [pµ,X ν] = ih̄ηµν .
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4. World-line quantization and physical states

Coupling the system to a world-line metric in a diffeomorphic invariant way is simple enough.
As explained in [16], this is achieved through the action

S[xµ, pµ, θ; e] =
∫

dτ

[
1

e
L + e�

]
, (64)

where the dimensionless degree of freedom e(τ )—actually a Lagrange multiplier—is the
world-line einbein (using |e(τ )| rather than e(τ ) in the above action implies invariance also
under orientation reversing world-line diffeomorphisms), while L is the Lagrange function
in (3). Here, � is a real constant of the same physical dimension as L (and H), playing the
rôle of a cosmological constant on the world-line [16].

Applying the usual constraint analysis [15] the Hamiltonian formulation of the system is
given by

S =
∫

dτ {ẋ · �x + ṗ · �p + θ̇�θ − e(H − �)}, (65)

H being the Hamiltonian of which the quantization has been considered above. It should be
obvious that the present dynamics preserves all the previous global symmetries associated with
the quaplectic group, whereas invariance under τ translations has been promoted to a local
gauge invariance on the world-line. The first class constraint generating the latter symmetry
is the condition

� = H − � = 0, H = �, (66)

which defines the space of physical states, i.e., states invariant under the world-line
diffeomorphism symmetry group. Since all previously identified Noether charges commute
with H, indeed quantum physical states fall into representations of the quaplectic group. For
physical consistency, the choice of cosmological constant � must be such that none of these
physical states be of negative norm.

In any �θ superselection sector such that �θ = h̄(n + λ) �= 0, the Ĥ eigenspectrum is
given by

H :
1

2
N0

λ0

ακ0
h̄2(n + λ)2 + h̄N0

|λ0h̄(n + λ)|√
κ0

(2N + D) , (67)

while we know that no negative norm states are present only in the lowest level N = 0. It
should be clear that given a choice of values for the parameters κ0, λ0 and α, there always exists
a range of values for � such that a solution to the condition H = � exists only with N = 0
and for some unique choice of λ and n. In this case the gauge invariance constraint projects out
from the physical spectrum all negative norm states. We also know that this physical spectrum
then includes states of energy–momentum Pµ taking an arbitrary value, and such that these
are organized into representations of the Poincaré group all of vanishing spin. However, the
mass spectrum thereby obtained is not at all constrained, with the invariant mass-squared value
(Mc)2 = −P2 taking on all real values, hence corresponding to a continuous mass spectrum
of massive states, a massless state, and a continuum of spacelike tachyonic states.

In the �θ superselection sector with �θ = 0, namely when n = 0 with the choice λ = 0,
no negative norm states arise, and the gauge invariance constraint then reduces to

−(Mc)2 = P2 = 2

N0
� − 1

κ0
X 2. (68)

However, since no restriction applies to the spectra of Xµ and X 2 eigenvalues, once again a
continuum mass spectrum including a spacelike tachyonic branch is obtained, with a spin
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content associated with the internal degrees of freedom which spans all possible tensor
representations of the corresponding little groups according to whether the states are time-,
light- or spacelike.

5. Conclusion

This paper solved the world-line quantization of a simple particle-like system realizing the
quaplectic symmetry inherent to the Born–Green reciprocity principle under the exchange
of spacetime coordinates xµ = (ct, �x) and their conjugate variables pµ = (E/c, �p) for
a Minkowski spacetime geometry. By considering free motion on the associated Weyl–
Heisenberg group, an action invariant under the full quaplectic group Q(D − 1, 1) ∼= U(D −
1, 1)�H(D), which includes the ordinary Poincaré group as a subgroup, was constructed, and
coupled to a world-line geometry in a diffeomorphic invariant manner. Within the quaplectic
realization of the Born–Green reciprocity principle, this is indeed the simplest generalization
possible of the similar construction for the relativistic scalar particle, in which case the
symmetry group over which free motion is considered is the Abelian spacetime translation
group. An intriguing outcome of the construction is that the spectrum of the Hamiltonian is
organized into Landau-like levels.

The coupling to the world-line geometry involves a constant parameter akin to a world-line
cosmological constant. Even though the space of quantum states includes negative norm ones
for a manifestly spacetime covariant quantization, the structure of the diffeomorphic gauge
invariance constraint is such that for an appropriate choice of the cosmological constant none
of the negative norm states belongs to the physical spectrum, in which case the latter are all
of zero spin. However, the physical spectrum is infinitely degenerate in the conserved total
energy–momentum of the system—the symmetry associated with spacetime translations—
with no further restriction on the corresponding Lorentz invariant mass-squared quantity taking
all possible real values. Consequently, the physical spectrum consists of relativistic scalar
particles but with a continuous mass spectrum including a spacelike tachyonic branch. Given
the general scheme of the quaplectic group as a symmetry for reciprocal invariance in phase
space, which includes the Poincaré algebra as a subgroup, the appearance of such a continuous
mass spectrum certainly seems to be consistent with the conclusions of O’Raifeartaigh’s
theorem [18].

Some of the features of the conclusions established above may remind one of other work
having possibly some relation to Born’s reciprocity principle. In [19], based on nonlocal field
theories expanded in an appropriate basis of quantum states of internal degrees of freedom
of which the dynamics is chosen in an ad hoc manner, a linear discrete mass spectrum is
identified. Even though this work bears some resemblance with the ideas of the reciprocity
principle, in particular in the manner these were first discussed by Born himself using the
relativistic four-dimensional harmonic oscillator, as the author of that work himself states the
model of [19] differs from Born’s model because of the introduction of these internal degrees
of freedom accounting for the nonlocality of fields. Furthermore, the basic equation of [19],
which extends the usual massive Klein–Gordon field equation by replacing the mass-squared
term by the square of the Hamiltonian of the relativistic harmonic oscillator, is chosen in an
ad hoc manner, and does not derive from a more basic principle. As is well known and was
recalled previously, the usual massive Klein–Gordon equation may be understood to express
the gauge constraint for invariance under local world-line diffeomorphisms. Likewise in our
approach the identified wave equation expresses a similar condition for a world-line coupled
action invariant under the symmetries of the reciprocal principle, leaving no room for some ad
hoc choice of Hamiltonian constraint, except for the value of the cosmological term �. At the
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very best the only point of overlap of our work with that of [19] is with the wavefunctions for the
quantum states of the relativistic harmonic oscillator, or more precisely with the configuration
space wave representation of the Fock algebra with the signature of the Minkowski metric.
But as is well known, in a quantization maintaining Lorentz covariance these states necessarily
include negative norm ones, thus leading to negative quantum probabilities, spelling disaster
for the theory unless these states may be projected out consistently through some gauge
symmetry constraint as done in our analysis. This is also the deficiency of which the work
of [20] suffers, even though this may not be obvious since the only aspect in which that
latter work may have some relation with Born’s reciprocity principle is in the choice of the
ground-state wavefunction of the relativistic harmonic oscillator as a basic ansatz for the
construction of the nucleon electromagnetic form factors. Even though it may appear that
the issue of negative norm states is thereby circumvented, it must be pointed out that the
corresponding Gaussian quantum state is simply not normalizable: its wavefunction diverges
at timelike infinity for the internal degrees of freedom. Except for the empirical interest as
a useful parameterization of nucleon form factors in a specific kinematical regime, it would
seem difficult to find anything more fundamental in the proposal of [20], however useful it may
have been phenomenologically. Since in our work all quantum states remain normalizable
in the internal sector, and at worst normalizable in the Dirac sense in the energy–momentum
sector, while in the physical sector they are all of positive norm, any attempt at trying to find
common points between [20] and the present analysis should prove to be most contrived and
artificial indeed.

On the face of it a continuous mass spectrum may seem not to be an appealing feature from
a physics point of view. However, it is quite noteworthy that by tuning the value of a simple
constant parameter in the action, namely the cosmological constant term �, it is possible to
project out negative norm states from the physical spectrum, even though the appearance of
tachyonic states cannot be avoided. In the case of the ordinary relativistic spinless particle, no
negative norm states are possible but this time the cosmological term, which sets the mass of the
particle, determines whether the state is time-, light- or spacelike. An appropriate choice for
the cosmological term thus excludes the tachyonic solution in that case. In the context of string
theory in the critical spacetime dimension, in effect the world-sheet cosmological constant
is set to zero because of world-sheet conformal invariance, and indeed all strictly negative
norm states are once again projected out from the physical spectrum while spacelike tachyonic
states are not necessarily absent on account of world-sheet reparametrization invariance alone.
This raises the question whether for two-dimensional quantum gravity there could exist also
nonvanishing values of the cosmological constant which would once again project out the
negative norm states from the physical spectrum.

One would like to identify possible restrictions on the construction such that both a
continuous mass spectrum is avoided or at the least its tachyonic branch excluded. A first
naive attempt would be to identify the conserved energy–momentum of the system with the
dual conjugate coordinates pµ, and then in accord with the reciprocity principle, do likewise
for the spacetime coordinates xµ and the conserved quantities associated with translations
in the conjugate coordinates. Namely one may wish to impose the following extraneous
second-class constraints,

Pµ = pµ, Xµ = xµ. (69)

However, an interpretation in terms of relativistic states of specific invariant mass and spin
requires consistency between the conservation of these quantities and the equations of motion,
namely

ẋµ(τ ) = 0, ṗµ(τ ) = 0. (70)
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Such restrictions thus prove to be too stringent since they preclude any dynamics whatever.
One may wonder whether, by rendering the construction world-line and/or spacetime

supersymmetric, some of the problems could not be avoided. One could indeed hope that a
tachyonic branch may be excluded with the help of some spacetime supersymmetric projection
of the physical spectrum—as happens with the GSO projection of fermionic strings. However,
it is not clear how a continuous mass spectrum, albeit time- and light-like only, could be
avoided. One possibility would be to identify a way of compactifying the conserved energy–
momentum Pµ, and hence also Xµ, on account of Born–Green reciprocity. Since, when
�θ �= 0, these two quantities do not commute, this would imply not only a discrete mass
spectrum, but a finite one as well. Such a full compactification would then render finite
the volume of the phase space associated with the conserved quantities (Xµ,Pµ), namely
the generators of the Weyl–Heisenberg subgroup H(D) of the full quaplectic symmetry
Q(D − 1, 1) ∼= U(D − 1, 1) � H(D), of the reciprocally invariant system studied in this
work.

However, it is noteworthy to remark that in the context of so-called unparticle physics [21]
which has recently spurred so much phenomenological interest, as a matter of fact continuous
mass spectra are inherently present [22], leading to unforeseen experimental telltale signs in
forthcoming LHC experiments. Besides the tachyonic issue which may possibly be addressed
considering supersymmetric extensions of the present analysis, this very point could offer
yet a new perspective on the old idea of the Born reciprocity principle and its more modern
realizations through dualities of Yang–Mills gauge theories and M-theory [5, 6, 23].
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Appendix

In this appendix, the choice of action (3) used in section 2 is motivated by considering
free motion on the Weyl–Heisenberg group associated with the D dimensional Minkowski
spacetime coordinates xµ = (ct, �x) and their conjugate variables pµ = (E/c, �p). Indeed,
from the outset such an approach is guaranteed to lead to a system invariant under the full
quaplectic group Q(D − 1, 1) ∼= U(D − 1, 1) � H(D). The Weyl–Heisenberg group is
generated by Hermitian operators X̂µ, P̂ µ and the unit operator I such that
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[X̂µ, P̂ ν] = ih̄ηµνI. (A.1)

The general Weyl–Heisenberg group element is thus parametrized according to

g(θ, xµ, pµ) = eiθI+ i
h̄
pµX̂µ− i

h̄
xµP̂µ , (A.2)

where the angular variable θ takes its values, say, in the interval 0 � θ � 2π .
In the case of a general Lie group G of elements g, the G invariant line element on the

group manifold is given in the form, at least at a formal level,

ds2 = −Tr(g−1 dg)2, (A.3)

up to some normalization factor, and the necessity of a proper definition of the trace operation.
In turn the action for free motion on such a manifold is of the form, again up to normalization

S[g] ∝ −
∫

dt Tr

(
g−1 dg

dt

)2

. (A.4)

In the case of the above Weyl–Heisenberg group elements g(θ, xµ, pµ) a direct calculation
finds

−Tr(g−1 dg)2 = 1

h̄2 [dxµ dxν Tr P̂µP̂ν + dpµ dpν Tr X̂µX̂ν]

+

[
dθ − 1

2h̄
(dxµpµ − xµ dpµ)

]2

Tr I, (A.5)

in which it is assumed that the definition of the trace operation is such that the operators
X̂µ, P̂ µ, X̂µP̂ ν and P̂ µX̂ν are of vanishing trace. Introducing then a regularized definition
of the trace operation in the case of the infinite-dimensional representation of the Heisenberg
algebra (A.1), it follows that

−Tr(g−1 dg)2 ∝ 1

2
[dxµ dxµ + µ0 dpµ dpµ] +

1

2
µ1

[
dθ − 1

2h̄
(dxµpµ − xµ dpµ)

]2

, (A.6)

where µ0 > 0 and µ1 � 0 are regularization-dependent normalization factors of the
appropriate physical dimension. This latter expression provides the choice of action considered
in section 2.

An alternative realization of the Weyl–Heisenberg group is provided by the following
(2D + 2) × (2D + 2) real matrices [12],

H(θ, xµ, pµ) =




ID 0 0 pµ

0 ID 0 xµ

−xµ pµ 1 2θ

0 0 0 1


 , with

dH(θ, xµ, pµ) =




0 0 0 dpµ

0 0 0 dxµ

−dxµ dpµ 0 2dθ

0 0 0 0


 ,

(A.7)

where xµ, pµ ∈ R and 0 � θ < 2π . The line element d�2 = 1
4 Tr(H−1dH)2 is thus

d�2 = 1
2 dxµ dxµ + 1

2 dpµ dpµ + 1
2 [dθ − (dxµpµ − xµ dpµ)]2, (A.8)

in which the Minkowski metric is used to raise or lower indices where necessary. Up to
scalings of θ and pµ relative to xµ by appropriate dimensional constants, this expression
reproduces the required line element for our world-line action.
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